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two effects, one ought to succeed in reproducing 
scattered intensities.* 

I am grateful to Dr A. Benedetti for fr iendly 
discussions. 

*A quantitative analysis of the intensities scattered by some 
carbon samples is now under way (Ciccariello & Benedetti, 1985b). 
One compares the goodness of the fits obtained by parameterizing 
i(h) either according to (I.3) or to Bale & Schmidt (1984), i.e. 
Ah -'~ + B. (Actually, in the first case, further changes are required 
if the intensities refer to slit-defined beams.) Our preliminary 
results, which refer to the intensities reported in Fig. 1 by Perret 
& Ruland (1968), show no significant differences in the two cases. 
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Abstract 

An improved method of  implement ing  the absorpt ion 
correction procedure  of  Stuart & Walker [Acta Cryst. 
(1979), A35, 925-933] is presented. This method 
scales measured  reflections to a partial  reference data 
set of  corrected intensities by determining,  for each 
crystal, a t ransmiss ion surface representing the rela- 
tive t ransmiss ion as a funct ion of secondary beam 
directions. By reformulat ing the observational  
equations and  by int roducing eigenvalue filtering of 
the least-squares normal  equations,  the problems of  
correlation between parameters  defining the trans- 
mission surface are reduced. 

Introduction 

Absorpt ion effects can create serious problems in 
macromolecu la r  crystal lography especially with the 
method of  i somorphous  replacement,  which depends  
on accurate determinat ion of  small  intensity differen- 
ces between reflections recorded from different crys- 
tals. A method  has been described (Stuart & Walker,  
1979; Walker  & Stuart, 1983) for deal ing with this 
source of  systematic error. The method depends  upon 
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having a reference data set that has been previously 
corrected for absorpt ion effects and to which the 
uncorrected measurements  are to be scaled, that is 

I~ef i = Tpslraw, (1) 

where I~ef is the absorption-corrected intensity of the 
ith reflection, i Iraw is the uncorrected measurement ,  
and Tps is the t ransmission factor parameter ized by 
the pr imary  and secondary beam directions p and s. 

In principle,  the t ransmission surface Tps can be 
determined if  a reasonably well distr ibuted set of  I~ef 
is available.  This reference data set ideally consists 
of  data that have been corrected by an empir ical  
method (e.g. K o p f m a n n  & Huber,  1968; North,  
Phill ips & Mathews,  1968), such as partial  diffrac- 
tometer data, which includes a uniformly distr ibuted 
sample of  strong reflections throughout  reciprocal 
space. Alternatively,  heavy-atom-derivat ive data may  
be scaled to native data, or calculated intensities can 
be used (Walker  & Stuart, 1983). 

In this paper  we extend the usefulness of  the 
original method  and make its appl icat ion more 
straightforward. These improvements  deal solely with 
the solution of  the least-squares equations and not 
with any fundamenta l  assumptions  of the approach.  
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The method 

To derive the transmission surface Tps from the refer- 
ence data we use the approximation of Kopfmann & 
Huber (1968): 

Tp~= TpTs, (2) 

where Tp and T, are the primary and secondary 
transmission coefficients respectively. For rotation 
photographs (following Stuart & Walker, 1979), Tp 
may be taken as a constant for any single photograph 
because the movement of the crystal is only a few 
degrees and Tp is a slowly varying function. It is also 
convenient to include with Tp the scale factor kj for 
the j th film and a pseudo-temperature factor for each 
film Bj, which describes the relative decrease in 
intensity of higher-angle reflections caused, for 
example, by radiation damage. Then we have 

Tp~ = lg exp (-Bss2) T~. (3) 

Here the subscript j refers to the j th film pack and 
s = sin0/A. This correction factor will then be used 
to correct all measured intensity data from the crystal. 

The transmission surface for each crystal, Tp~, can 
be expanded as a Fourier series in the spherical angles 
~oi,/zi describing the direction of the secondary beam 
for the ith reflection in the crystal frame of reference: 

Tpi{ = Kj exp (-Bjs2)I1 +~., ~, [Pmn COS (m~i+ ntzi) 
l m n 

Qm, sin (m~,+ n~i)]}. (4) + 

Here the subscript j refers to the j th film pack and 
the subscript i refers to the individual reflection; Kj 
includes kj and an overall scale on T~. This expression 
differs slightly from that of Stuart & Walker (1979) 
in that the scale factor Kj is factored out, but is related 
to equation (2.2) of Walker & Stuart (1983), and is 
similar to the expansion proposed by Katayama, 
Sakabe & Sakabe (1972) for diffractometer data. 
Notice that the diffracted rays for different reflections 
on different films can take similar paths through the 
crystal yet not have similar positions on their films. 
Thus this method is different from those where two- 
dimensional scaling functions are expressed in terms 
of the positions of reflections on each film (Rossmann, 
Leslie, Abdel-Meguid & Tsukihara, 1979) and offers 
a means of combining data from many different films 
to determine a common transmission surface. 

To determine the parameters P and Q defining the 
part of the transmission surface spanned by the 
measurements, we minimize by thernethod of itera- 
tive non-linear least squares the expression: 

- - - -  w i j ( I r a w - G i j I r e f )  
i j 

=Z Z w,j (AI) ~, (5) 
i j 

where Gij = 1/T~s and wij is a weighting factor 1/tr 2. 
Expressing the residuals in terms of the inverse trans- 
mission factor renders the weights independent of the 
parameters being refined (Hamilton, Rollett, & 
Sparks, 1965). 

Two problems arise in the solution of these 
equations. The first problem pertains to the manner 
in which a subset of possible parameters {Pro,, Qmn} 
is selected for surface fitting. In the algorithm of 
Stuart & Walker it is necessary to choose a suitable 
subset of these parameters in advance in order to 
avoid statistical correlation and its attendant difficul- 
ties in solving the least-squares normal equations. 
Factoring out the scale factor as in (4) above remedies 
this problem to some extent since otherwise, if left 
in as the P00 term, it is found to be too highly corre- 
lated with the first few harmonic terms, a problem 
alluded to in the example treated by Stuart & Walker. 
A secorid problem arises in the case where the diffrac- 
tion data from one crystal span a relatively small total 
rotation range so that only part of the transmission 
surface is sampled. This is often the case with large- 
unit-cell crystal structures, or with small crystals 
where radiation damage restricts useful data collec- 
tion to a small range. In this case, the first few terms 
of the Fourier expansion (equation 4) become highly 
correlated because the data fail to sample large 
enough fractions of their periods. Of course, one of 
the advantages of a Fourier representation in the case 
where data cover nearly 360 ° around the spindle is 
that the expected symmetry of the transmission sur- 
face sets boundary conditions on the solution. With 
data covering a range less than about 100 ° the sym- 
metry of the transmission surface around the spindle 
is not useful in fixing the solution. Indeed, in (4) 
there is no physical meaning attached to the Fourier 
coefficients P and Q and the problem should best be 
thought of in terms of curve fitting or modelling part 
of the transmission surface. Both of the problems 
described here lead to ill conditioning of the 
equations and uncertainties concerning the accuracy 
of the transmission surface. 

Following Diamond (1958), we treat the problem 
of finding the best set of linearly independent 
modelling functions by modifying the eigenvalue 
spectrum of the diagonalized normal equations aris- 
ing from (5). These orthonormal functions are them- 
selves linear combinations of the Fourier terms 
appearing in (4) but usually comprise a smaller set. 
Briefly, if the normal equations are 

/~Ex= gAl, (6) 

where x is the set of parameters (Fourier coefficients, 
scale factors and shifts in the temperature factors), 
then, to solve by diagonalization we obtain A the 
matrix of eigenvectors of EE such that 

AEEA = A, (7) 
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where A is the diagonal matrix of eigenvalues. The 
solution to the normal equations, therefore, becomes 

x = A A - I , ~ : a I .  (8) 

Now, the problems of correlation discussed above 
can be treated by filtering the matrix A-1. By setting 
to zero those elements of A -a greater than some 
filtering limit, those eigenfunctions of the system that 
do not contribute strongly to fitting the transmission 
surface are eliminated. 

To alleviate the second problem described above, 
correlation due to short data range, we modify the 
period of the fundamental harmonic in (4) in the 
following manner: 

q~ ti = q~i( 2 7r / SAq~tot) (9) 

/x~ =/z,(27r/SA/./.tot). (10) 

S is a factor that rescales the period of the Fourier 
terms. We choose it to be about 2, implying that the 
first terms of the expansion are half sine or cosine 
waves, za~Otot and A/Ztot are the total ranges of 
secondary beam directions covered by the diffraction 
data, A q~tot = Acp rotation + 4 0max, Za/~tot = 4 0max. 

Discussion 

The least-squares equations (5) are of the same form 
as arise in other methods used to put reflections from 
different sources on a common scale, such as film-to- 
film scaling (Hamilton, Rollett & Sparks, 1965; Fox 
& Holmes, 1966) and post-refinement of crystal 
orientation from rotation photographs (Winkler, 
Schutt & Harrison, 1979; Rossmann et al., 1979). 
Apart from the different parameters used to define a 
reflection scale factor Gij, these corrections also differ 
in their sources of reference data Iref. For the absorp- 
tion method described here, and for post-refinement 
of orientation, the reference data are external to the 
measured data i /raw and hence independent of G o 
but, for film-to-film scaling, reference intensities are 
derived from the data themselves, so I~ef is a function 
of the G o. A similar formulation could be used for 
absorption correction (or indeed all the corrections 
mentioned could be included simultaneously in the 
G~j), but this would only give a complete description 
of the absorption surface if data were included from 
rotations of one crystal about several dilIerent axes. 

This method of absorption correction is not restric- 
ted to rotation film data. Walker & Stuart (1983) 
discuss its application to diffractometer data using 
calculated data as the reference. The method can be 
easily extended to the continuous rotation geometry 
used with electronic area detectors. In this case, the 
film-dependent parameters Kj and Bj can be replaced 
by functions of the rotation angle. 

Kj = ~, Rt cos ( l¢p ) + St sin ( l¢ v) (11) 
1 

Bj=f(~Op), (12) 

e.g. a polynomial in ~p. This would require an external 
reference data set as described above for film data. 
Alternatively, Arndt & Thomas (1982) have suggested 
a strategy for data collection by fast rotation about 
a number of different axes such that each reflection 
is measured several times from the same crystal in 
different geometries. With proper choice of rotation 
axes, the absorption surface may be extracted from 
the data, fitting a function of both the primary and 
secondary beam directions. 

The modified method works well with either 
intensities or amplitudes as the data, and gives well- 
determined transmission surfaces. Its success 
depends particularly on the fact that it eliminates 
correlations between radiation damage effects, as 
modelled by a temperature factor for each film, and 
purely absorptive effects, which are a property of the 
crystal and hence common to all films. Indeed, by 
using data from all films from one crystal to refine a 
common transmission surface, a considerable gain in 
accuracy is achieved over methods where a separate 
two-dimensional function is determined for each film 
(discussed by Rossmann et al., 1979). We wish to 
re-emphasise that finding a transmission surface by 
this method is essentially a curve-fitting exercise, no 
physical meaning being attributed to the Fourier 
coefficients P and Q. It is therefore sensible to adopt 
an approach whereby a larger number of parameters 
is initially included in the model leaving for the 
eigenvalue filter the task of selecting a smaller subset 
of linear combinations of these parameters for the 
best curve fitting. 

This work was done during the tenure of an Estab- 
lished Investigatorship (CES) of the American Heart 
Association. We wish to thank Drs Nigel Walker and 
David Stuart for sending us a copy of their computer 
program and Drs Robert Diamond and Uli Arndt for 
helpful discussions. 
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